Human C-to-U Coding RNA Editing Is Largely Nonadaptive.
نویسندگان
چکیده
C-to-U RNA editing enzymatically converts the base C to U in RNA molecules and could lead to nonsynonymous changes when occurring in coding regions. Hundreds to thousands of coding sites were recently found to be C-to-U edited or editable in humans, but the biological significance of this phenomenon is elusive. Here, we test the prevailing hypothesis that nonsynonymous editing is beneficial because it provides a means for tissue- or time-specific regulation of protein function that may be hard to accomplish by mutations due to pleiotropy. The adaptive hypothesis predicts that the fraction of sites edited and the median proportion of RNA molecules edited (i.e., editing level) are both higher for nonsynonymous than synonymous editing. However, our empirical observations are opposite to these predictions. Furthermore, the frequency of nonsynonymous editing, relative to that of synonymous editing, declines as genes become functionally more important or evolutionarily more constrained, and the nonsynonymous editing level at a site is negatively correlated with the evolutionary conservation of the site. Together, these findings refute the adaptive hypothesis; they instead indicate that the reported C-to-U coding RNA editing is mostly slightly deleterious or neutral, probably resulting from off-target activities of editing enzymes. Along with similar conclusions on the more prevalent A-to-I editing and m6A modification of coding RNAs, our study suggests that, at least in humans, most events of each type of posttranscriptional coding RNA modification likely manifest cellular errors rather than adaptations, demanding a paradigm shift in the research of posttranscriptional modification.
منابع مشابه
Human coding RNA editing is generally nonadaptive.
Impairment of RNA editing at a handful of coding sites causes severe disorders, prompting the view that coding RNA editing is highly advantageous. Recent genomic studies have expanded the list of human coding RNA editing sites by more than 100 times, raising the question of how common advantageous RNA editing is. Analyzing 1,783 human coding A-to-G editing sites, we show that both the frequency...
متن کاملLtter In Search of Beneficial Coding RNA Editing
RNA editing is a posttranscriptional modification that can lead to a change in the encoded protein sequence of a gene. Although a few cases of mammalian coding RNA editing are known to be functionally important, the vast majority of over 2,000 A-to-I editing sites that have been identified from the coding regions of the human genome are likely nonadaptive, representing tolerable promiscuous tar...
متن کاملC-to-U editing and site-directed RNA editing for the correction of genetic mutations.
Cytidine to uridine (C-to-U) editing is one type of substitutional RNA editing. It occurs in both mammals and plants. The molecular mechanism of C-to-U editing involves the hydrolytic deamination of a cytosine to a uracil base. C-to-U editing is mediated by RNA-specific cytidine deaminases and several complementation factors, which have not been completely identified. Here, we review recent fin...
متن کاملRNA editing in hornwort chloroplasts makes more than half the genes functional.
RNA editing in chloroplasts alters the RNA sequence by converting C-to-U or U-to-C at a specific site. During the study of the complete nucleotide sequence of the chloroplast genome from the hornwort Anthoceros formosae, RNA editing events have been systematically investigated. A total of 509 C-to-U and 433 U-to-C conversions are identified in the transcripts of 68 genes and eight ORFs. No RNA ...
متن کاملRNA Editing RNA
RNA Editing RNA editing is a term used to describe a diverse set of phenomena in which mRNA, rRNA, and tRNA transcripts are modified in sequence after transcription. The types of RNA editing vary from uridine (U) or cytidine (C) insertions and deletions within coding regions of mitochondrial mRNAs to the substitution of specific C residues with U residues in plant mitochondrial mRNAs or the sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 35 4 شماره
صفحات -
تاریخ انتشار 2017